- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Bharti, Suman (2)
-
Lo, Dan (1)
-
Lo, Dan Chia-Tien (1)
-
Shahriar, Hossain (1)
-
Shi, Yong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The integration of quantum computing with knowledge graphs presents a transformative approach to intelligent information processing that enables enhanced reasoning, semantic understanding, and large-scale data inference. This study introduces a Quantum Knowledge Graph (QKG) framework that combines Neo4j’s LLM Knowledge Graph Builder with Quantum Natural Language Processing (QNLP) to improve the representation, retrieval, and inference of complex knowledge structures. The proposed methodology involves extracting structured relationships from unstructured text, converting them into quantum-compatible representations using Lambeq, and executing quantum circuits via Qiskit to compute quantum embeddings. Using superposition and entanglement, the QKG framework enables parallel relationship processing, contextual entity disambiguation, and more efficient semantic association. These enhancements address the limitations of classical knowledge graphs, such as deterministic representations, scalability constraints, and inefficiencies in the capture of complex relationships. This research highlights the importance of integrating quantum computing with knowledge graphs, offering a scalable, adaptive, and semantically enriched approach to intelligent data processing.more » « lessFree, publicly-accessible full text available July 8, 2026
-
Bharti, Suman; Lo, Dan Chia-Tien; Shi, Yong (, IEEE)Traditional Knowledge Graphs (KGs), such as Neo4j, face challenges in managing high-dimensional relationships and capturing semantic nuances due to their deterministic nature. Quantum Natural Language Processing (QNLP) introduces probabilistic reasoning into the KG context. This integration leverages quantum principles, such as superposition, which allows relationships to exist in multiple states simultaneously, and entanglement, where the state of one entity dynamically influences the state of another. This quantum-based probabilistic reasoning provides a richer, more flexible representation of connections, moving beyond binary relationships to model the nuances and variability of real-world interactions. Our research demonstrates that QNLP enhances Neo4j’s ability to analyze context-rich data, improving tasks like entity extraction nd knowledge inference. By modeling relationship states probabilistically, QNLP addresses limitations in traditional methods, providing nuanced insights and enabling more advanced, contextaware NLP applications.more » « less
An official website of the United States government
